Isoparametric hypersurfaces in a space form and metric connections
نویسندگان
چکیده
منابع مشابه
Hypersurfaces of a Sasakian space form with recurrent shape operator
Let $(M^{2n},g)$ be a real hypersurface with recurrent shapeoperator and tangent to the structure vector field $xi$ of the Sasakian space form$widetilde{M}(c)$. We show that if the shape operator $A$ of $M$ isrecurrent then it is parallel. Moreover, we show that $M$is locally a product of two constant $phi-$sectional curvaturespaces.
متن کاملReal Hypersurfaces of a Complex Space Form
In this paper, we show that an n-dimensional connected noncompact Ricci soliton isometrically immersed in the at complex space form (C n+1 2 ; J; h; i), with potential vector eld of the Ricci soliton is the characteristic vector eld of the real hypersurface is an Einstein manifold. We classify connected Hopf hypersurfaces in the at complex space form (C n+1 2 ; J; h; i) and also obtain a ch...
متن کاملPrincipal Curvatures of Isoparametric Hypersurfaces in Cp
Let M be an isoparametric hypersurface in CPn, and M the inverse image of M under the Hopf map. By using the relationship between the eigenvalues of the shape operators of M and M , we prove that M is homogeneous if and only if either g or l is constant, where g is the number of distinct principal curvatures of M and l is the number of non-horizontal eigenspaces of the shape operator on M .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tsukuba Journal of Mathematics
سال: 1997
ISSN: 0387-4982
DOI: 10.21099/tkbjm/1496163158